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ABSTRACT: Many theoretical and experimental  papers [1-4]  have 

been devoted to investigating the turbulent boundary layer in the ini-  

t ial  section of a channel. For the most part, however, the flow of an 

incompressible fluid with constant parameters is considered. There 

are many practical cases in which it is of interest to treat the develop- 

ment of the turbulent boundarylayer of gas in the init ial  section of a pipe 
when conditions are strongly nonisothermal. A solution of a problem 

of this type, based on the theory of l imi t  taws, is given in paper [1]. 

The present art icle extends this solution to the case of the flow of a 

high-enthalpy gas when the effect of gas dissociation on the turbulent 

boundary layer characteristics must be taken into account. We shall 
consider the flow of a mixture of i gases which is in a "frozen" state 

inside the boundary layer, and in an equilibrium state on its bound- 

aries. Formulas are derived for the laws of friction and heat exchange, 
and a solution is given for the turbulent boundary layer equations in 

the in i t ia l  section of the pipe when the wall temperature is constant 

and the gas flows at a subsonic velocity. 

w 1. The relat ive Iaw of friction for a turbulent boundary layer of 

dissociated gas. According to paper [1], the relat ive coefficient of 

turbulent friction is determined by the expression 

/ \ Q 21:w 2~w0 
zF = [~7- ) c , =  , R++ ' powo"- c]o ~" powo I (1.1) 
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Here q' is the ratio of the friction coefficient in the present cir- 

cumstances to that under standard conditions for the same values of 
R + + .  

The relation between the gas density and enthalpy may be ob- 

tained from the equations 

T 

p = p R T ,  h o = E a i o h i o  , t z i= f C p i d T + h [ L  (1o2) 
i 0 

The degree of dissociation of air for a low-temperature plasma 

(T = 5000 ~ K) is of the order 0.8. In this region the parameter gCp 

may be taken to be constant over the boundary layer cross section. 

Then 

p h0 - -  Ec~iohi ~ 
(1.3) 

Po - -  h - -  2aihi ~ " 

Here and in what follows the summation is carried out over the 

index i. Setting (1.2) into (1o8) and assuming similarity of the velocity, 

enthalpy, and concentration fields, [2] we obtain 

p t - -  Zaio'~i 

po = apf~ --  2 :%i , i  + {t --  %~ - -  .X (ao --  % ) i  %} ~ 

h~o ' ~ i - -  h o ]" (1.4) 

The following symbols have been used in Eqs. (1.1)-(1.4):  p is the 
pressure, p is the density, h is the enthalpy, h~ is the heat of forma- 

tion for the i - th  component, d is the degree of dissociation, Z is the 

relat ive mixing length, w is the dimensionless veloci ty,  T is the 

temperature,  R is the gas comtant;  the subscripts are w (parameters 

at the wall), 0 (parameters in the core of the stream). 
Equation (1.4) establishes a relation between the density and ve- 

loci ty of the gas at  a given point for given gas parameters at the bound- 

ary layer borders. Strictly speaking, Eq. (1.4) is exact only in the case 

in which the gas flow is without gradient, for a constant value of en- 

thalpy at the wall,  and a Prandtl number PT = 1.0. 
However, calculations show that this equation may also be used, 

accurately enough for aiI practical  purposes, where the boundary con- 

ditions are more complicated, in particular, for gas flow in the ini t ial  

section of a pipe, 
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Fig. 1. The effect of nonisothermal conditions 

on the parameters of the viscous sublayer. The 
curve is calculated from formula (1.7), the points 

1, 2, 3 correspond to the experiments of papers 

[4-6]~ 

In order to est imate the parameter Z we shall make the usual as- 

sumptions of sem iempir ica l  turbulence theory: [~ = 0, l = x~ and 

"r~ = 1.0. Then 

Z = --  ] / ' ~ 0 •  in ~> (1.5) 

Analysis of experimental  data concerning the velocity distribution 
over the cross section of a turbulent boundary layer for markedly non- 

isothermal conditions [4, 6] reveals that the dimensionless velocity at 

the boundary of the viscous sublayer, and the relat ive thickness of 

the viscous sublayer retain the same values as for an incompressible 
fluid if the physical parameters of the gas are determined from the 

wall temperature. 

Consequently 

Wl @,,0 1/%cyG 
- -  1 t . 6 ,  ( 1 , 6 )  

from which 

�9 135~o6++ 
(01 ~ t l .6  ]/1/2CfoWtp~, ~1 --  wfl~++ 6 , (1.7) 

B§ + p0u'd5 ++ p0 (1.8) 
- -  ~t w % -  p,~ " 

Formula (1.7) is compared with the experiments of different authors 

[4, 6] in Fig. 1, where ~ ~ ~o 1 / tl.6.wo]/h~_c 1. Substimting(t .  7)into 

(1.5) we have 

135~p8 +§ 
z =  - -  ' ~  (1.9) 

o)1R++8 �9 

The friction coefficient c3c ~ for standard conditions is determined 

from the Karman formula 

112e1 o ~ (2.5 InR ++ @ 3.8)-% (1.10) 

It has been shown in papers [7, 8] that  the Reynolds number appear- 

ing in formula (1.10) should he determined from (1o8). 

For standard conditions we have [1] 

Z = t --  o10. (1.11) 



68 Z H U R N A L  P R I K L A D N O I  M E K H A N I K I  I T E K H N I C H E S K O I  F I Z I K I  

This simple relation between Z and w 1 may be expected to hold 
even for more complicated conditions. Actually when calculations 
made from formula (1.9) (Fig. 2) are compared with formula (1.11), 
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Fig. 2. 3:he effect of nonisothermal 
conditions on the parameter Z = 
= Z/(1 - w j .  Formulas (1.9) and 
(1.7) were used for calculating Z 
and ~0~, respectively; the different 
points signify: 1) R ++ = 500, 

2) R ++=104 , 3) R ++=10 ~. 

employing the "one seventh" law to determine the velocity distribu- 
tion, and the limiting function ~ and (1.3) for the various values of 
OP and R ++ we see that in regions of varisticn of CO and R ++ of prac- 
tical interest we may use the formula 

Z : t - -  11.6 ]/-i~lo~F~ . (1.12) 

Setting Eqs. (1.4), (1,7), and (1.12) into Eq. (1.1) and assuming 
that (1.9] witl be valid when there is dissociation, we may integrate to 
obtain the relative Iaw of friction for a turbulent boundary layer for 
the conditions under consideration: 

F 
~h = L (t -- E%o9{)(2 -- I/W)2 + WEawr162 -- 

-- [1--  ~(ao--aw){~P{] 8.2 ~ L F ] •  

if ~0 = ~w = 0, then 

4 (t - -  l / ~ )  
% = I +  

~ ( 1 - 8 . 2 1 / 7 i o ~ Z % )  " 

(1.18) 

(1.14) 

Equation (2.1) contains the parameter H, which is the ratio of the 
displaeemen~ thickness to the momentum thickness. We shall ex- 
amine the effect which nonisothermal conditions and dissociation have 
on the size of this parameter. The physical displacement thickness 6 + 
is related to the displacement thickness in Doroduitsin variables 6~ by 
the relation 

5 

,)(I - - ~ ) d y .  
0 

(2.2) 

Taking Eqs. (1.4) into account we have 

6 +  = 6 1  § - -  

8 
l (h - -  2 % h i ~  ) - -  (ho - -  

h o - -  Y a o h i ~  
o 

ZCt~ohi ~ / y / ' -  

These lead to 

H ~--- H i * a ,  ~ - -  % ~  E~162 ('2.5) 

The form parameter H i depends oniy feebly on the fact that condi- 
tions are nonisothermal and may be regarded as a constant equal to 
Hto = 1.347. 

Figure 4 shows the results of calculations of the parameters of an 
axially symmetric turbulent boundary layer assuming a wail velocity 
profile (n = 1/7) and using formula (1.4) for the density. 

It is clear from the graph that the parameters 6~ and 6++have a 
marked dependence on the nonisothermal conditions, but that the size 
of H i remains practically constant and equal to 1.347. Figure 5 com- 
pares calculations of the form parameter H made under the same as- 
sumptions with formula (2.5). The effect of air dissociation on thg size 
of the form parameter H can be clearly seen. 

When there is no dissociation we obtain H = HI~ h from Eq. (2.5). 
Thus for the boundary conditions ~b a = const the form parameter H 

may be taken as constant over the length of the pipe. 
Equations (2.1), (1.15), and (1.10) suffice for calculations of the 

turbulent boundary layer when there is external flow around bodies, 
since the velocity at the outer border of the boundary layer 
W 0 is determined from the conditions of potential flow around bodies 
and is a known function of the longitudinal coordinate. When dealing 
with gas flow in the initiat section of a pipe the velocity in the core 
of the stream is the required function, and the equation of continuity 

As R + + ~ ,  Z --, t, o t ~ 0 Eq. (1.13) gives ~ 3  

, x / s  / % - ~%ir ~ ] -  . 
, z ~ = 4 [ , +  \ ~ /  j (1.15) 

For a nondissuciated gas we obtain the familiar result [1] 

~ % = 4 ( 1 / ~ h  + t)-~ . (1.16) 

The maximum discrepancy between formulas (1.14) and (1.16) for 
R ++ = 300 ~la = 0.1 is about 25% Thus for practical calculations we may 

use the limiting relative law of friction in the form (1.15). 

Figure 3 compares the results of calculations from formula (1.13) 
with the experiments of N. M. Belyardn [3]. We note that the proposed 
theory agrees satisfactorily with experiment. 

w 2. The Development of a Dynamic Turbulent Boundary Layer in 
the haitial Section of a Pipe. We shall represent the integral momentum 
equation [1] for the entrance section of a pipe in the form 

d R  *+ R § d W o  c 
dX + -WT-g2- (l + H) = Rm~" - ~  �9 (2.1) 

Here W0 = w0/w0t is the relative velocity in the undisturbed flow 
core; lqox is the velocity at the inlet of the pipe. 

f 
o ~| 1 

Fig. 3. Comparison of calculations from 
formula (1.13) with the experiments of 
N. M. Belyanin; the calculations from 

formula (1.13) are given by curves 
1) for R ++ = 300, 2) for R ++ = ~o, 
while 3 is the region covered by the 

experiments of N. M. Belyardn. 

must necessarily be employed in order to determine it. The continuity 

equation for a round pipe may be conveniently written in the form [1] 
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poxWo~ : poWo (1 -- 26 + / Ro). (2.6) 

Introducing the form parameter H, we have 

R ++ = ~{~RDI (Wo --  t) / H .  (2.7) 

The system o fequations (2.1), (1.15), (1.10), and (2.7) is closed and 
may be solved to give the requited relation between the parameters 

W 0, R ++, c f / 2  and the length of the pipe x/D. 
The law of friction for standard conditions (1.10) may be conven- 

iently approximated by a power function of the form 

c/o = B 1 (B++) "~ (2.8) 

Here the values of the coefficients B and m depend on the range of 
variation of R ++. 

For R++from 300 to 104 we may take B/2 = 0.0128 and m = 0.25. 
In this case it is possible to obtain an analytic solution of the initial 

system of equations for the condition h w = const. When Eqs. (2.7) and 
(2.8) are taken into account, gq. (2.1) may be written in the form 

(Wo - -  1) m + (Wo--  l)  m+t ] dWo ~ B (4//) r+~ (2.9) 
Wo Wo ~ (f + U)]  ~ 2 -  : ~-. ( r im) ~ 

assuming that there is a uniform velocity profile at the entrance to the 
pipe, allowing for the fact that for the conditions h w = eonst, '~ = eonst, 
it follows that H = const (the case of subsonic gas flow is considered), 
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Fig. 4. The effect of nonisothermal 
conditions on the parameters of an 
axially symmetric turbulent bound- 
ary layer 3.) 5+/5 +, 2) 61++/51 +, 

3) 6 ++, 4) H1/Hli s, 5) 6+/6 ++.  

and also assuming that B/2 = 0.0128 and m = 0.25, we may thus 

obtain from (2.9) 

5 ~ - -  t [ (I-]-H) 4 : ] [ 4 ( W o - - f )  ~  

f (Wo--t) ~ + ]Z2(Wo--t)~ 
- - ~ .  61n  ( W 0 - - t )  ~  ] / ' 2 ( W o - - t ) ~  

gg  (Wo - i) ~ 
--  ]/"22arctg t ' - - - - ~ o - - l ~ J - -  

-1- H) (Wo - -  t) Le5 0.0725H z'2~ 
-- (1 ~ __ v~" RDlO.2~. X .  

(2.1o) 

For the region of subsonic flow of an undissociated gas Eq. (2.10) 
leads to Eq. (6.35) of paper [1], except that the gas viscosity entering 

into RDI is determined from the wall temperature. 
Figure 6 gives the results of calculations for W o as a function of 

=X/RDt  m from Eq. (2.10) for various degrees of dissociation and 

nonisothennal conditions. Equation (2.10) is valid only for the initial 
section of the pipe where the dynamic and thermal boundary layers 
have not joined up. 

We shall determine the initial section from the condition that at 
the end of the stabilized section the thickness of the boundary layer 
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Fig. 5. The effect of air dissociation on the size of the 
form parameter: 1) calculations from Eq. (2.5), 2) with- 
out allowing for dissociation; the points are the calcu- 
lations made in terms of integral parameters. All the 

calculations were performed for T w = 300 ~ K. 

becomes equal to the radius of the pipe. Then 

t ~++ WOH ~++ 
BH++ : RD 2 Ro = RD1 2 Ro ' (2.11) 

while on the other hand, 

RDI(WoH -- 1) 
BH++ -- 4H (2.12) 

Equations (2.11) and (2.12) give 

t 
WoH - -  i - -  25++H / Ro �9 (2.13) 

Parameters 6 ++ / Bo and H may be determined from Fig. 4 in the 
first approximation. Setting W0H in Eq. (2.10), we may determine the 
length of t ie  initial region: 

X H - -  ~O.O~hHL~5 

f (WoH --  1) 0.5 + lf~ (Won - -  1) ~  + l 

--~-~-I .  i)o.~ g~(Wo, i ) o . 2 ~ + i -  t'~ x 
(WoH -- _ 

l/" ~ (WoH _ t)o,~ q , ~ - -  f)~.2~] 
X arc tg . . . .  J 1 -- (t -I- H)(W~ ]/V~ 

i -- (WoH -- t) ~ 
i (2.14) 

The dashed line in Fig. 6, calculated from Eqs. (2.t3) and (2.14), 
determines the length of the initial section and the region within which 
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Fig. 6. The dimensionless velocity W0 in the core of 
the stream as a function of the pipe length g = XR -~ 
for various values of,~a; thecurves 1 . . . . .  7 correspond 

tothe values ~a = 1.06, 0.4, 0.2, 0.t37, 0.0875, 

0.044. The dashed line determines the boundary of 
the initial region (caIcuIated from formula (2.14)). 

the relations obtained are applicable. We note the marked effect that 
gas dissociation has on the stabilization length. 
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The sequence of calculations for a dynamic turbulent boundary 
layer in the initial cross section of a pipe is as follows. 

1. Formulas (1.15) and (2.5) are used to determine the parameters 
'Voo and H from the given parameters a w, a0, and h w. 

2. The length of the stabilization region X H is determined from 
Eqs. (2.13) and (2.14). 

3. W o as a function of X is calculated from Eq. (2.10) or from the 
graph in Fig. 6. 

4. The value of R +v is determined from Eq. (2.7), and the values 
of the friction coefficients are calculated from Eqs. (2.8) and (1.15) or 
(1.13). 

w The development of a warm turbulent boundary layer in the 
initial section of the pipe. The integral energy equation for the initial 
section of the pipe may conveniently be written in the form [I] 

dBh*+ Rh++ d (Ah) 
dX + ~ ~ = RDxWoVFsSo. (3.1) 

Here S O is the Stanton criterion under standard conditions. For the 
case h w = eonst 

dRh§ / dX = BD1Wo~'sSO ; (3.2) 

on the assumptions which have been made the law of heat transfer 
has the same form as the law of friction, L e. ,  

li+/% -~%~r ~'/.1 -~ " F s = 4  \ i - 3 % ~ % ]  j �9 (3.3) 

Under standard conditions 

So = B / 2 (Rh++)m pn.  (3.4) 

We now take 13/2 = 0.0128, m = 0.25 and n = 0.75. Then the 
integral of gq. (3.2) is 

1 

~h++ = [ ~  RDlXFs X l~rn 

0 

It follows from Eq. (2.9) that 

2R~, 
lVo dX = BW (4H) t+r~ • 

[ V 1 1 ... .  ] 
• (W0--1) m ' (~ 0 - - - J  ( I + H )  dWo. (3.6) 

I ~ Wo 

Consequently 

RDI (wo t) f 
Rh++ = 12 + H - -  4HP0 sn k 

( 1 & H )  t25 [4 
0v0_ t)0.25_ 

(Wo -- 1) t~5 [ 

--  122 arc tg ]/2 (Wo -- t) ~ 
I - -  (Wo - -  1 )o.5 

t In (Wo-- t)~ ~ - ] / '2(Wo--1) ~ + 1  ]~0.s. 
- ~ -  <Wo_t),,.5_ g~(Wo-0O.~5+l  J~ (3.7) 

Knowing W o as a function of X, as determined by Eq. (2.10), we 
may find the local values of the criterion R~ + from Eq. (3.7), while the 
local value of the Stanton criterion S is determined from formulas (3.4) 

and (3.3). 
Equations (2.7), (2.8), (3.4), and (3.7) may be used m obtain the 

rotation between the local values of the friction and heat transfer co- 
efficients for the conditions under consideration: 

cf p0.~5 ~ + H (1 ..L H) 1,25 I 4 ( W  ~ _ 1)0.25 _ 
2S = L 2 (TVo -- t)t'25 

- -  ]I2 arc tg ] /2  (Wo - -  t) 0.25 
1 - -  (Wo - -  1) 0.5 

t ( W o -  1) ~ + t r ~  ( W o -  1) ~ + I l ~  ~ 
- ~ -  In (Wo - i )  ~ - V 2  < W o -  0 ~ + i 

(3.8) 

Calculations made on the basis of Eq. (3.8) show that the pressure 
gradient in the initial section exerts no marked effect on the Reynolds 
similarity. 

The proposed method of calculation may be extended to the case 
where the distribution h w along the channel is arbitrary, by subdividing 
the channeI into separate sections with constant gas enthaIpy at the wa l l  

Finally the authors are grateful to S. S. Kutateladze for discussing 
the paper. 
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