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THE TURBULENT BOUNDARY LAYER OF DISSOCIATED GAS IN THE INITIAL SECTION OF A TUBE
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ABSTRACT: Many theoretical and experimental papers [1-4] have
been devoted to investigating the turbulent boundary layer in the ini-
tial section of a channel. For the most part, however, the flow of an
incompressible fluid with constant parameters is considered, There
are many practical cases in which it is of interest to treat the develop-
ment of the turbulent boundary layer of gas in the initial section of a pipe
when conditions are strongly nonisothermal. A solution of a problem
of this type, based on the theory of limit laws, is given in paper {1].
The present article extends this solution to the case of the flow of a
high-enthalpy gas when the effect of gas dissociation on the turbulent
boundary layer characteristics must be taken into account. We shall
consider the flow of a mixture of i gases which is in a "frozen" state
inside the boundary layer, and in an equilibrium state on its bound-
aries. Formulas are derived for the laws of friction and heat exchange,
and a solution is given for the turbulent boundary layer equations in
the initial section of the pipe when the wall temperature is constant
and the gas flows at a subsonic velocity.

§1. The relative law of friction for a turbulent boundary layer of
dissociated gas. According to paper [1], the relative coefficient of
wrbulent friction is determined by the expression
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Here ¥ is the ratio of the friction coefficient in the present cir-
cumstances to that under standard conditions for the same values of
Rt

The relation between the gas density and enthalpy may be ob-
tained from the ecuarions
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The degree of dissociation of air for a low-temperature plasma
(T = 5000° K) is of the order 0.3. In this region the parameter Bep
may be taken to be constant over the boundary layer cross section.
Then
hy — T, 1.0
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Here and in what follows the summation is carried out over the

index i. Setting (1.2) into (1.3) and assuming similarity of the velocity,
enthalpy. and concentration fields, [2]we obtain
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The following symbols have been used in Egs. (1.1)—(1.4): p is the
pressure, p is the density, h is the enthalpy, bj is the beat of forma-
tion for the i~-th component, d is the degree of dissociation, 1 is the
relative mixing length, w is the dimensionless velocity, T is the
temperature, R is the gas comstant; the subscripts are w (parameters
at the wall), 0 (parameters in the core of the streamy),

Equation (1.4) establishes a relation between the density and ve-
locity of the gas at a given point for given gas parameters at the bound -
ary layer borders. Strictly speaking, Eq. (1.4) is exact only in the case

in which the gas flow & without gradient, for a constant value of en-
thalpy at the wall, and a Prandtl number Pp = 1.0,

However, calculations show that this equation may also be used,
accurately enough for all practical purposes, where the boundary con-
ditions are more complicated, in particular, for gas flow in the initial
section of a pipe.
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Fig. 1. The effect of nonisothermal conditions

on the parameters of the viscous sublayer, The

curve is calculated from formula (1.7), the points

1, 2, 3 correspond to the experiments of papers
[4-6].

In order to estimate the parameter Z we shall make the usual as-
sumptions of semiempirical turbulence theory: B =0, I ==« and
1, = 1.0. Then

A ]/%Dw In £, (1.5)

Analysis of experimental data concerning the velocity distribution
over the cross section of a turbulent boundary layer for markedly non-
isothermal conditions [4, 6] reveals that the dimensionless velocity at
the boundary of the viscous sublayer, and the relative thickness of
the viscous sublayer retain the same values as for an incompressible
fluid if the physical parameters of the gas are determined from the
wall temperature.

Consequently
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Formula (1.7) is compared with the experiments of different authors
[4,6] in Fig. 1, where Q = w, / 11.6-w, Vo, Substituting(l. 7)into
(1.5) we have

Z=_ (1.9)
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The f{riction coefficient cfa for standard conditions is determined
from the Karman formula

Yaep 0 = (2.5 IoR+ -+ 3.8)2, (1.10)
It has been shown in papers [7, 8] that the Reynolds number appear-
ing in formula (1.10) should be determined from (1.8).
For standard conditions we have [1]

Z =1 —ay. (1.11)
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This simple relation between Z and wy may be expected to hold
even for more complicated conditions. Actually when calculations
made from formula (1.9) (Fig. 2) are compared with formula (1.11),
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Fig. 2. The effect of nonisothermal
conditions on the parameter Z =
=z/(1 ~ w;). Formulas (1.9) and
(1.7) were used for calculating Z
and wy, respectively; the different
points signify: 1) R** = 500,

2) R** = 10%, 3) R™ = 108,
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employing the ®one seventh® law to determine the velocity distribu-
tion, and the limiting function ¢ and (1,8) for the various values of
¥p and R**, we see that in regions of varistion of ¥p and R* of prac-
tical interest we may use the formula
Z=1—116 YT ¥y, . (1.12)

Setting Eqs. (1.4), (1,7), and (1.12) into Eq. (1.1) and assuming
that (1.9) will be valid when there is dissociation, we may integrate to
obtain the relative law of friction for a turbulent boundary layer for
the conditions under consideration:
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As R**—>oo, Z — 1, 0 — 0 Eq. (1.13) gives
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For a nondissociated gas we obtain the familiar result [1]
Yoo=4(Y b, + 1. (1.16)

The maximum discrepancy between formulas (1.14) and (1.16) for
R = 300 9y = 0.1 is about 25%, Thus for practical cal culations we may
use the limiting relative law of friction in the form (1.15).

Figure 3 compares the results of calculations from formula (1.13)
with the experiments of N. M. Belyanin [3]. We note that the proposed
theory agrees satisfactorily with experiment.

§ 2. The Development of a Dynamic Turbulent Boundary Layer in
the Initial Section of a Pipe. We shall represent the integral momentum
equation [1] for the entrance section of a pipe in the form
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(2.1)

Here Wy = wo/wyy is the relative velocity in the undisturbed flow
core; Wy is the velocity at the inlet of the pipe.

Equation (2.1) contains the parameter H, which is the ratio of the
displacement thickness to the momentum thickness, We shall ex-
amine the effect which nonisothermal conditions and dissociation have
on the size of this parameter. The physical displacement thickness %
is related to the displacement thickness in Dorodnitsin variables 6'{ by
the relation

5+=61+—§(—‘3- —1>(1— -};—o)dy. (2.2)
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Taking Eqs. (1.4) into account we have
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These lead to
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The form parameter Iy depends only feebly on the fact that condi-
tions are nonisothermal and may be regarded as a constant equal to
Hyq = 1.347.

Figure 4 shows the results of calculations of the parameters of an
axially symmetric turbulent boundary layer assuming a wall velocity
profile (n = 1/7) and using formula (1.4) for the density.

It is clear from the graph that the parameters 67 and § " have a
marked dependence on the nonisothermal conditions, but that the size
of Hy remains practically constant and equal to 1,347. Figure 5 com-
pares calculations of the form parameter H made under the same as-
sumptions with formula (2.5). The effect of air dissociation on the size
of the form parameter H can be clearly seen.

When there is no dissociation we obtain H = Hyyy, from Eq. (2.5).

Thus for the boundary conditions ¥ = const the form parameter H
may be taken as constant over the length of the pipe.

Equations (2.1), (1.15), and (1.10) suffice for calculations of the
turbulent boundary layer when there is external flow around bodies,
since the velocity at the outer border of the boundary layer
W, is determined from the conditions of potential flow around bodies
and is a known function of the longitudinal coordinate. When dealing
with gas flow in the initial section of a pipe the velocity in the core
of the stream is the required function, and the equation of continuity
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Fig. 3. Comparison of calculations from

formula (1.13) with the experiments of

N. M. Belyanin; the calculations from

formula (1.13) are given by curves

1) for RVt = 300, 2) for RT = o,

while 3 is the region covered by the
experiments of N. M. Belyanin.

must necessarily be employed in order to determine it. The continuity
equation for a round pipe may be conveniently written in the form [1]
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PosWoy = poWo (1 — 26+ / Ry) . (2.6)

Introducing the form parameter H, we have
R+ =1 Rp (Wo — 1)/ H. (2.7

The system of equations (2.1), (1.185), (1.10), and (2.7) is closed and
may be solved to give the required relation between the parameters
W, K7, ¢f/2 and the length of the pipe x/D.

The law of friction for standard conditions (1.10) may be conven-
iently approximated by a power function of the form

¢o = B/ (R*™)™ (2.8)

Here the values of the coefficients B and m depend on the range of
variation of R1".

For R**from 300 to 10% we may take B/2 = 0.0128 and m = 0.25.

In this case it is possible to obtain an analytic solution of the initial
system of equations for the condition by, = const. When Eqs. (2.7) and
(2.8) are taken into account, Eq. (2.1) may be written in the form

Wo— 1" (We—1y™HL AW, B (4H)“™
[( OWO) +4 ow) <1+H)}T£=‘FT§R ))m (2.9)
D1

assuming that there is a uniform velocity profile at the entrance to the
pipe, allowing for the fact that for the conditions hy, = const, ¥ = const,
it follows that H = const (the case of subscnic gas flow is considered),
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Fig. 4. The effect of nonisothermal
conditions on the parameters of an
axially symmetric turbulent bound-
ary layer 1) st/ 2) 6,7%/6,7,
3)67 T, 4) Hy/Hy 5) 87/61T.

and also assuming that B/2 = 0.0128 and m = 0.25, we may thus
obtain from (2.9)
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For the region of subsonic flow of an undissociated gas Eq. (2.10)
leads to Eq. (6.35) of paper [1], except that the gas viscosity entering
into Rp, is determined from the wall temperature.

Figure 6 gives the results of calculations for W, as a function of
t =X/R,™ from Eq. (2.10) for various degrees of dissociation and
nonisothermal conditions. Equation (2.10) is valid only for the initial
section of the pipe where the dynamic and thermal boundary layers
have not joined up. )

We shall determine the initial section from the condition that at
the end of the stabilized section the thickness of the boundary layer
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Fig. 5. The effect of air dissociation on the size of the
form parameter: 1) calculations from Eq. (2.5), 2) with-
out allowing for dissociation; the points are the caleu-
lations made in terms of integral parameters. All the
calculations were performed for Ty, = 300° K,

becomes equal to the radius of the pipe. Then

RH++=RD—;——%=RDIE§'§% , (2.11)
while on the other hand,
e TP = 19
Equations (2.11) and (2.12) give
1
Wor =T—25%H | s - 21%)

Parameters 8**/ Ro and H may be determined from Fig. 4 in the
first approximation. Setting Wypy in Ed. (2.10), we may determine the
length of the initial regiom:

.

H 70,0725 52

LI (Wog — 12+ V2(Wog — 1) + 1 V3 x
V3 n(WoH s VE(W(,H —10B g

{[:(1 + H)—‘Z— + 1] [4 (Wogg — 1% —

VEWyy — 1%

(W — 1)-2 }
1— (W — )70

X arc tg }_(1 FH) e (214)

The dashed line in Fig. 6, calculated from Eqs. (2.13) and (2.14),
determines the length of the initial section and the region within which
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Fig, 6. The dimensionless velocity Wy in the core of
the stream as a function of the pipe length § = xR0+
forvarious valuesof ¥y ; thecurvesl, ,.,, 7correspond
to the values ¥y = 1.06, 0.4, 0.2, 0.137, 0.0875,
0.044, The dashed line determines the boundary of
the initial region (calculated from formula (2.14)).

the relations obtained are applicable., We note the marked effect that
gas dissociation has on the stabilization length.
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The sequence of calculations for a dynamic turbulent boundary
layer in the initial cross section of a pipe is as follows.

1. Formulas (1.15) and (2.5) are used to determine the parameters
¥ and H from the given parameters o, o, and hy.

2. The length of the stabilization region Xy is determined from
Eqs. (2.13) and (2.14).

3. W, as a function of X is calculated from Eq. {2.10) or from the
graph in Fig. 6.

4. The value of R™ is determined from Eq. (2.7), and the values
of the friction coefficients are calculated from Eqs. (2.8) and (1.15) or
(1.13).

§3. The development of a warm turbulent boundary layer in the
initial section of the pipe. The integral energy equation for the initial
section of the pipe may conveniently be written in the form {1]

ARt R d(Ah)
¥+ A X = RpWo¥ So. (3.1)

Here $¢ is the Stanton criterion under standard conditions, For the
case hy; = const

dR,** | dX = Ry, We¥,S03 (3.2)

on the assumptions which have been made the law of heat transfer
has the same form as the law of friction, i.e.,

’lp — Za, i‘pi aq—2
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Under standard conditions

So=B/2 (R,*")™ P". (3.4)

We now take B/2 = 0.0128, m = 0.25 and n = 0.75. Then the
integral of Eq. (8.2) is
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1t follows from Eq. (2.9) that
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Kunowing W, as a function of X, as determined by Eq. (2.10), we
may find the local values of the criterion R;* from Eq. (3.7), while the
local value of the Stanton criterion S s determined from formulas (3.4)
and (3.3).

Equations (2.7), (2.8), (3.4), and (3.7) may be used to obtain the
relation between the local values of the friction and heat transfer co-
efficients for the conditions under consideration:
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Calculations made on the basis of Eq. (3.8) show that the pressure
gradient in the initial section exerts no marked effect on the Reynolds
similarity.

The proposed method of calculation may be extended to the case
where the distribution h, along the channel is arbitrary, by subdividing
the channel into separate sections with constant gas enthalpy at the wall.

Finally the authors are grateful to S. S. Kutateladze for discussing
the paper.
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